RHIC II /eRHIC accelerator plan

Electron cooling at RHIC

- → High brightness heavy ion beams
- → 10 fold RHIC luminosity upgrade

10 GeV electron ring:

 \rightarrow eA and polarized ep collisions (eRHIC)

Costs and schedules

Readiness: 2 ("significant challenges not yet resolved")

Thomas Roser NSAC Subpanel Meeting February 15, 2003

RHIC luminosity upgrade

- RHIC luminosity is limited by intra-beam scattering → beam cooling at full energy!
- Feasibility study by BINP (V. Parkhomchuk et al.): RHIC luminosity can be increased ten times.
- Bunched electron beam requirements for 100 GeV/u gold beams: $E = 54 \text{ MeV}, \langle I \rangle \sim 100 \text{ mA}, \text{ electron beam power: } \sim 5 \text{ MW!}$
- Requires high brightness, high power, energy recovering superconducting linac, as demonstrated by JLab for IR FEL. (50 MeV, 5 mA)
- First linac based, bunched electron beam cooling system used at a collider
- First high p_t electron cooler to avoid recombination of e⁻ and Au⁷⁹⁺
- Maintains present bunch spacing (~ 100 ns) and available IR length
- Increased luminosity for pp and other species
- Longitudinal cooling possibly gives shorter diamond length

RHIC Luminosities with Electron Cooling

	w/o e-cooling	with e-cooling
Gold collisions (100 GeV/n x 100 G	GeV/n):	
Emittance (95%) πμm	$15 \rightarrow 40$	$15 \rightarrow 3$
Beta function at IR [m]	1.0	$1.0 \rightarrow 0.5$
Number of bunches	112	112
Bunch population [10 ⁹]	1	$1 \rightarrow 0.3$
Beam-beam parameter per IR	0.0016	0.004
Peak luminosity [10 ²⁶ cm ⁻² s ⁻¹]	32	90
Average luminosity [10 ²⁶ cm ⁻² s ⁻¹]	8	70
Pol. Proton Collision (250 GeV x 2	250 GeV):	
Emittance (95%) πμm	20	12
Beta function at IR [m]	1.0	0.5
Number of bunches	112	112
Bunch population [10 ¹¹]	2	2
Beam-beam parameter per IR	0.007	0.012
Luminosity [10 ³² cm ⁻² s ⁻¹]	2.4	8.0
BROOKHAVEN	3	Office of Science

NATIONAL LABORATORY

RHIC Luminosity with and without Cooling

RHIC Electron Cooler R&D

Develop CW s.c. cavity for high intensity beams:

Large bore, 700 MHz cavity with ferrite HOM dampers and high beam break-up threshold (collab. with JLab)

eRHIC collider

- Collider geometry capable of e-A and polarized e-p collisions
- 10 GeV electron beam \rightarrow s^{1/2} for e-A: 63 GeV/u; s^{1/2} for e-p: 100 GeV
- Range of Ion Species: Pol. Protons, Pol. Neutrons (Pol. He3) \rightarrow U
- Polarization: $70\% \times 70\%$
- Luminosity: $0.5 1.0 \times 10^{33}$ cm⁻²s⁻¹ per nucleon
 - Need electron cooling of RHIC beam
 - Need 10 GeV, ~ 500 mA electron beam
- Ring-ring option (see next slide) based on existing technology. e-ring is very similar to PEP II HER.
- New e-ring fits comfortably on the BNL site

Ring – ring option

- Collisions at one interaction region
- 10 GeV, 0.5 A e-ring with ¼ of RHIC circumference (similar to PEP II HER)
- e-ring with about 15 min. polarization build-up time using super-bends
- Inject at 2 GeV, operate at 5 10 GeV
- Existing RHIC interaction region allows for typical asymmetric detector (similar to HERA or PEP II detectors)

Costs and schedule

 R&D and preliminary design 	
(incl. e-cooling, eRHIC, detectors):	FY03 – FY08
• Construction	FY08 – FY13
• Cost:	
Electron-heavy ion collisions:	
10 GeV electron accelerator & storage ring	\$200M
Detector for e-p/A collisions	\$100M
Intersection region	\$ 15M
Heavy ion Luminosity Upgrade:	
Electron beam cooling at full RHIC energy	\$ 34M
Detector Upgrades for rare processes	\$ 60M
Total Estimated Direct Costs	\$409M
EDIA@15%; Conting@25%; ProjG&A@13%	\$255M
Total Estimated Costs (w/o escalation)	\$664M

